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Abstract— In order for an autonomous unmanned ground
vehicle (UGV) to drive in off-road terrain at high speeds, it
must analyze and understand its surrounding terrain in real-
time: it must know where it intends to go, where the hazards
are, and many details of the topography of the terrain. Much
research has been done in the way of obstacle avoidance, terrain
classification, and path planning, but still so few UGV systems
can accurately traverse off-road environments at high speeds
autonomously. One of the most dangerous hazards found off-
road are negative obstacles, mainly because they are so difficult
to detect. We present algorithms that analyze the terrain using
a point cloud produced by a 3D laser range finder, then attempt
to classify the negative obstacles using both a geometry-based
method we call the Negative Obstacle DetectoR (NODR) as well
as a support vector machine (SVM) algorithm. The terrain is
analyzed with respect to a large UGV with the sensor mounted
up high as well as a small UGV with the sensor mounted low
to the ground.

I. INTRODUCTION

Unmanned vehicle navigation and obstacle avoidance has
had major breakthroughs in the last few years, showing that
a vehicle can drive without human intervention in highly
controlled desert and urban environments such as was proved
in the Defense Advanced Research Projects Agency (DARPA)
Grand Challenge and DARPA Urban Challenge. In addition,
the Jet Propulsion Laboratory (JPL) has shown that unmanned
vehicles “Spirit” and “Opportunity” can navigate through the
harshest of off-road environments, Mars, albeit at a very slow
pace. Yet UGV autonomy has been difficult to incorporate
into a rugged off-road real-time scenario. This technology
lag is in large part due to lack of real-time autonomous
off-road traversability analysis for unmanned ground vehi-
cles (UGV), including negative obstacle detection at great
distances. Military applications for UGVs such as resupply,
casualty evacuation, surveillance, and reconnaissance must
accommodate off-road terrain based on the warfighting areas
in which the US military is currently involved. Accurately
representing off-road terrain and analyzing it in real-time is a
challenge for most UGV robotic systems and the majority of
UGVs operate at slow speeds over relatively flat terrain. A
recent report by SSC Pacific [1] concerning the mobility of
UGVs for dismounted marines provides a survey and analysis
of current robotic technologies and concludes that there are
significant weaknesses in each system, especially in the area
of mobility in the face of hazardous terrain. This report also
identifies that NATO’s vital gaps are ”moving in all terrain
with tactical behavior in nearly all weather conditions” .

There are significant improvements that need to be made in
autonomous obstacle detection and avoidance before those
higher mission-oriented tasks can be accomplished in the
areas of the world the US military is currently fighting, and
detecting negative obstacles is an important aspect of the
problems that need to be addressed.

II. RELATED RESEARCH

Negative obstacles are difficult to detect, especially at long
ranges, but methods used have included searching for negative
slopes that are too steep or gaps in data that exceed a distance
threshold followed by a drop in elevation or a steep uphill
slope [2], [3], [4]. JPL uses both a column detector for gaps
that exceed a width and height threshold with a region size
filter to eliminate negative obstacles that are too short as
well as a unidirectional elevation difference detector. In [5],
[6], ray tracing is perfomed from the current position of the
laser and context-based labeling from occlusions from the
ground or positive obstacles are considered while detecting
negative obstacles. JPL also has presented a novel method
for detecting negative obstacles using thermal signature for
night-time detection [7].

Other methods include using aerial image and lidar data,
which has been demonstrated [8] to do negative obstacle
detection as well, which can detect the bottom of the negative
obstacle, which is not always the case from the perspective
of a ground robot.

This work can be beneficial to the general intelligent vehicle
public, and can be combined with such computer vision safety
systems as have been described in [9], [10].

III. APPROACH

A. Sensor and Platform Selection

The negative obstacle detection methods and software that
have been developed for this research are designed for an
unmanned ground vehicle using a 3D lidar. This research was
conducted to fit both a large and a small unmanned ground
vehicle platform, using a large and a small 3D lidar. The
intended large platform is a Max ATV (Figure 2). It is a
six-wheel skid-steer all terrain vehicle with dimensions of
length 2.6m, width 1.5m, and height, including a roll bar,
of 1.7m. The 3D lidar used on the large UGV platform is a
Velodyne HDL-64E. This lidar system provides readings of
range and intensity out to a distance of 120 meters with 80%
reflectivity, providing 100,000 data points with 360 degrees
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Fig. 1: Velodyne HDL-64E lidar sensor

Fig. 2: Max ATV UGV test-bed platform

horizontal and 26.8 degrees vertical field of view at a rate
of 10Hz. SSC Pacific has demonstrated the accuracy of this
sensor on the water surface by detecting a lobster trap out
to 40m and a partially submerged black rock out 65m [11].
The smaller ground vehicle platform is an iRobot Packbot
(Figure 4) with length 89cm, width 52cm, and height 18cm,
mounted with a Hokuyo UTM-30LX lidar sensor, set in a
mechanism that tilts it vertically up and down for a full 3D
scan, which we refer to as the Nodding Hokuyo (Figure 3).
The Nodding Hokuyo scans 270 degrees horizontally and
can rotate slow enough to have less than 0.1 degree vertical
angular resolution, with a pitch from -90 degrees to +90
degrees.

B. Negative Obstacles

Negative obstacles are ditches or terrain with a steep
negative slope that if traversed would be a hazard to the
vehicle. Negative obstacles can be just as hazardous to
unmanned vehicles as obstacles above ground because they

Fig. 3: Computer generated model of Hokuyo UTM-30LX
lidar sensor in vertically rotating mechanism, built at SSC
Pacific (known as the Nodding Hokuyo)

Fig. 4: iRobot Packbot UGV test-bed platform with Nodding
Hokuyo sensor

Fig. 5: Geometry of negative obstacle (ditch) detection

could cause roll-over, tip-over, or high-centering. Usually
ditches that are larger than the width of the diameter of the
wheel are enough to cause damage to a vehicle. Obstacles of
greater widths may be crossed by vehicles at high enough
speeds, but we will not be attempting to provide navigation
techniques in this paper, simply methods of detection.

1) Detection Range and Stopping Distance: These hazards
are difficult to detect from close up and nearly impossible
from far away. Equation 1, based upon the small angle ap-
proximation and referenced from [7], illustrates the difficulty
of detecting negative obstacles at a range R and is shown in
Figure 5. The width of the obstacle is w, H is the height of
the sensor from the ground, h is the depth of the obstacle
seen by the sensor, and R is the range from the sensor to the
obstacle. The equation to solve for θ is

θ ≈ Hw

R(R+ w)
(1)

The angle θ decreases significantly as the range increases
(∼ 1

R2 ), which makes negative obstacles so difficult to detect
as range increases. Yet detecting negative obstacles at greater
distances is essential, especially for fast moving UGVs. Two
different methods to detect negative obstacles are used in
this paper. The first method uses a support vector machine
(SVM) that must be trained with ground-truth data. It has
been expected that there would be a limit in the range of
correct classification for the SVM because of the parameters
passed into it. The second method is called the Negative
Obstacle DetectoR (NODR), which uses a number of filters
and looks for contextual cues, so it can have expanded range
benefits.

It is known from [12] that the stopping distance for a
vehicle can be determined using Equation 2.



R =
v2

2µg
+ vTr +B (2)

where µ is the coefficient of static friction between ground
and wheels with a common value of 0.65 for off-road driving,
g is gravitational acceleration with a value of 9.8m/s2, Tr
is the total reaction time with a common value of 0.25s, and
B is a buffer distance used for safety with a value of 2m in
our experiments. The velocity value becomes the dominant
term at v > 3.2m/s: for a velocity of 24kph, the distance
needed to stop is 7.2m; for a velocity of 48kph, the distance
needed to stop is 19.4m.

2) NODR Classification Approach: Because of the diffi-
culty in detecting negative obstacles, this classification method
errs on the side of generously detecting negative obstacles
and then labeling them as only potential negative obstacles.
Only when the potential obstacle comes within close range
to the vehicle can enough data be gathered to truly classify
it as a real negative obstacle. This geometry-based method
for detecting negative obstacles is called Negative Obstacle
DetectoR (NODR) and is shown in Figure 8.

The NODR classifies potential negative obstacles by
detecting gaps, an absence of data, where there could exist a
ditch, cliff, or negative slope. The detection starts by tracing
a ray of 3D points outward from the sensor, following the
returns from the vertical alignment of lasers starting with
the lowest vertical angle towards the highest angle. This
algorithm is based on laser sensors that produce structured
results, such that can be vertically aligned. The Hokuyo
UTM-30LX returns a maximum of 1080 lidar beams per
horizontal scan and the vertically rotating mechanism allows
the Hokuyo to produce another horizontal scan above or below
the previous scan. This aligns well for following a vertical ray
of lidar beams without any modification. However,the output
from the Velodyne HDL-64E needs to be modified slightly.
This sensor has 64 vertically aligned lasers but reports 3 laser
pulses in the top 32 lasers for every 1 pulse in the bottom
32 lasers. To handle the ray tracing in this case, we have
combined the 3 laser returns from the top 32 lasers into one
return by taking the average x, y, and z values of the top 32
lasers and using the default values of the bottom 32 lasers,
providing one complete ray of 64 lasers.

The first step used in the NODR method is to search for
a step, a drop in elevation beyond a step threshold, that
extends beyod the gap distance. The gap threshold of our
two UGVs are determined by the size of a hole that would
cause damage or stop the platform. For those vehicles with
wheels, it is usually the size of the diameter of a wheel. For
the Max ATV with 3 wheels on each side, and the tracked
vehicles like the iRobot Packbot, it is the distance from the
front wheel or tread to the center of gravity. Note: no center
of gravity measurments were taken for either of these two
ground vehicles and the gap threshold values used were only
estimates for the simulated environment.

If the step search does not return a negative obstacle, then
the NODR looks for gaps in data between two points. While
tracing these radial rays, if a gap is found with a distance

greater than a gap threshold then it looks at the gap angle.
The gap angle filter uses the increase in vertical angular
resolution between the two scans. The threshold here is the
distance that would be expected if the next point had the same
elevation as the previous point, and the vertical angle had
increased by γ ∗∆ where ∆ is the vertical angular resolution
between horizontal scans (Figure 6). Tests provided the best
results when γ had a value of 1.5. It is noted that this might
not be the most accurate method to calculate true negative
obstacles, but our algorithm is attempting to be conservative
to avoid obstacles, and as was emphasized from Equation 1,
negative obstacles are extremely difficult to detect at long
ranges. Furthermore, if a gap is sufficiently wide to pass these
distance filters, the algorithm looks for contextual cues.

The cues to look for are either a significant drop in
elevation, such as one that would appear if the slope was
steeper than our maximum declining slope threshold (Figures
7a and 7b), or the data after the gap has a significant positive
slope (Figure 7c), as in the sloping up-side of a ditch. The
slope of the up-side (the back) of a ditch can be determined
by first calculating the number of following points should be
part of the back slope, determining their slope, and threshold
that value. The number of points is calculated by finding the
viewing angle of the negative obstacle. In Figure 5, this is θ.
For ranges R that are not quite so distant, where the small
angle approximation doesn’t work and Equation 1 doesn’t
provide an accurate measurement of θ, this equation is

θ = tan−1(
H

R
) − tan−1(

H

R+ w
) (3)

The number of slope points to be used is num points = θ
∆ ,

where ∆ is the vertical angular resolution of the sensor. As
long as num points is greater than 1, we can determine the
back slope. When the gap is detected at ranges where a back
slope is impossible to calculate because the vertical angle
resolution is less than θ, it is simply classified as a potential
negative obstacle.

Our research concluded that it does not add value to
differentiate between the gaps caused by a true negative
obstacle or just occlusion from a positive obstacle. A vehicle
should not navigate through a positive obstacle anyway, and
processing the potential negative obstacles is trivial, whereas
detecting positive obstacles and removing potential negative
obstacles found afterwards can take away many clock cycles
of precious processing time.

The result from the NODR is a vector ray between two laser
points that can be used to populate a grid map of obstacles and
terrain features. The approach we have taken in our research
is not to completely avoid these detected obstacles, because
at this point they are only potential negative obstacles. They
could still be steep slopes that are traversable but our sensors
do not have complete information because of the proximity
to the vehicle and limitations of our geometry-based methods.
In most cases the vehicle must be much closer to actually
classify these as true negative obstacles. Our proposed method
is to slow down when these potential negative obstacles are



Fig. 6: A potential negative obstacle will have a gap with a
distance greater than if the next laser point was found on a
flat surface with an increase in angle of γ times the angle
difference. Points A and B are true returns from a lidar traced
along a ray. The expected increase in vertical angle is ∆. If
the surface was flat and the vertical angle was γ ∗ ∆, the
next laser return would have been C. If the distance between
A and B is greater than A and C, this could be a negative
obstacle.

(a) Gap followed by a large drop in elevation: potential
negative obstacle

(b) Slight uphill slope followed by a gap and drop in
elevation: potential negative obstacle

(c) Gap followed by a steep uphill slope: potential negative
obstacle

Fig. 7: Ray tracing examples with results determined during
the potential negative obstacle detection step

in the immediate navigable path, and avoid them once they
have been truly classified.

C. SVM Classification Approach

As with the NODR classification approach, the support
vector machine returns the vector rays in between laser points
that are classified as potential negative obstacles. Parameters
passed into the SVM include the range to the first point
(of a pair of two vertically aligned points) from the sensor,
the distance between the two points, the change in vertical
angle of the two points (as if the second point had the same
elevation value as the first point) in reference to the vertical
angular resolution, and the elevation difference of the two
points. The SVM is trained by many samples of ground truth
vector rays of negative obstacles as well as non-negative

Fig. 8: Negative Obstacle DetectoR (NODR) flow chart

obstacles, then takes in each pair of vertically aligned points
from the test cases to determine its classification.

D. Real Negative Obstacle Classification

Those potential negative obstacles that are within a narrow
range of values are elevated to a true negative obstacle hazard
condition. This range is calculated based on the maximum
negative slope the vehicle can traverse and the vertical angle
measurements from the sensor, found in Equation 4 and
in Figure 9. For instance, the maximum negative slope we
are willing to let both of our vehicles traverse, φ, is a 20
degree decline. Based on the maximum negative vertical angle,
θmax, of the sensor and the angle between each increasing
horizontal scan, ∆, we would only be able to detect a steeper
decline between Distmin, and Distmax. For the Velodyne
on the Max ATV, this range is between 4.76 meters and 5.91
meters. After Distmax, the angle of the lidar scan with the
horizontal is less than φ and would not actually detect the
slope. Therefore, those potential negative obstacle rays that
begin between Distmin and Distmax are considered real
negative obstacles. This is a very short distance to react to a
real negative obstacle, but the navigation module should have
already slowed down for the potential negative obstacles as it
was approaching them (the speed should be slow enough to
allow stopping distance before the obstacle, using Equation
2).



Fig. 9: Sensor angles used to find the min and max distance
a steep negative decline can be discovered.

Distmin =
H

tan(θmax)

Distmax =
H

tan(θmin)
(4)

θmax, θmin > φ

IV. EXPERIMENTAL EVALUATION

The detection methods follow a vertical alignment of ladar
beams and report the vector ray between two beams where it
has detected a negative obstacle. For each negative obstacle
in a simulated terrain map there will be multiple negative
obstacle rays. Because each of the terrains were created from
a simulation, the exact location and vector ray is known and
is labeled as ground truth. If the detection methods finds a ray
that overlaps one of the ground truth rays, it is considered a
positive ray detection. Those detected rays that do not match
up with a ground truth ray are considered a false ray detection.
If there exists even one positive ray detection for a negative
obstacle, this is counted as a positive obstacle detection. The
results of negative obstacle ray detections as well as negative
obstacle detections are reported in this paper.

A. Setup of Simulated Environment

To better analyze negative obstacles and their various
representations, multiple simulated scenes were created, filled
with negative obstacles that would cause damage or halt the
robotic vehicle. These scenes were created by first building
a height-map of the terrain with any number of negative
and positive obstacles with specified sizes, as well any value
of roughness for the rest of the terrain. The roughness was
set by randomly selecting height values from a Gaussian
distribution. To simulate the lidar returns from the terrain, a
vector ray was created from the virtual location of the sensor
on the height-map (depending on the size of the simulated
platform), and a height-map intersection algorithm was used
to simulate a lidar pulse from the sensor. This was performed
by determining when the z value of the initial location of the
lidar ray switches between ”above” to ”below” the terrain,
or vice versa; comparing z values of the ray vector with the

Fig. 10: Simulated sample terrain (top) with lidar scans from
both the small (middle) and large (bottom) 3D lidars

z values of the terrain heightmap at the same x, y location.
The x, y, and z location where the lidar ray crosses over
becomes the 3D point to be added to the point cloud list.
The simulated 3D point cloud of the terrain was obtained
by following the horizontal and vertical angular resolution
pattern of both the small and large 3D lidar sensors that were
used in this research (see Figure 10).

B. Selecting of Test Cases

For this experiment, the simulations set the height of the
lidar appropriate for their vehicle platforms

Four experiments were conducted, two simulating the small
lidar and two for the large lidar in a combination of smooth
and rough terrain, separating results for the NODR and SVM
methods. All of the simulated terrains had negative obstacles
and some had randomly placed positive obstacles as well.

The SVM was trained with multiple sample height maps
of equal amounts ground truth negative obstacle rays and
non-negative obstacle rays, then tested with new simulated
obstacle maps.

C. Results of Experiments

Table I displays the results of the overall negative obstacle
rays and negative obstacles detected. Negative obstacles are
detected when one negative obstacle ray is detected inside
a negative obstacle. The results from each method are the
combination of of results from both simulated rough and
smooth terrains. The range of the experiment describes the
range at which obstacles were placed for that experiement.
The SVM experiments were extremely accurate within a
short range, which was even shorter for rougher terrain. A



TABLE I: Lidar Experiment Results

Lidar Method Range Neg Obs Rays
Detected (%)

Neg Obs De-
tected (%)

Small NODR 30m 52 78
Small SVM 6-8m 98 100
Large NODR 50m 27 31
Large SVM 16-20m 53 89

Fig. 11: Detection image for the rough SVM experiment for
the small lidar. The gaps in data are the negative obstacles,
and most are colored by the detection method (SVM detection
is in yellow). There are positive obstacles as well, and all the
data behind it is occluded from the lidar. Beyond the short
range limit (6m) there tends to be much more noise.

point cloud representation from the small lidar with negative
obstacle detection images of the rough test case is depicted
in Figure 11. Beyond the short range, the SVM method
innacurately identified every single ray beyond as negative
obstacles, which can be seen in Figure 12. Our hypothosis
is that the negative obstacles begin to be smaller than the
length between vertical lidar pulses and the SVM cannot
gather enough information to make a proper decision.

V. CONCLUSION AND FUTURE WORK

Based on the results from these experiments and according
to the stopping distance equations, the small vehicle can
travel 2.5m/s, which is its maximum speed, process the data
in 0.5s (our software can process negative obstacles as well
as 3D traversability analysis and path planning at an average
rate of 2Hz.), and still stop 2.2m away, far away from the
SVM rough terrain range limit of 6m. As well, the large
vehicle can travel 37kph, process the data in 0.5s, and stop

Fig. 12: False positives (yellow) reported for ranges that were
beyond the short range limit (16m) for the simulated large
lidar sensor

14m away, just shy of the svm rough terrain range limit of
16m. This is a good benchmark to start from for the goal of
high-speed off-road autonomous driving.

The best solution for negative obstacle detection is a
combination of SVM for the short range and NODR for
long range detection. Understanding this exact range limit
and how to push it out even further is a task for future work
and could provide even better results.

It has been demonstrated that it is possible to analyze
terrain data, classifying hazards such as positive obstacles,
steep slopes, step edges, and even negative obstacles at a
distance far enough to travel at relatively high-speeds. This
work will be beneficial for autonomous UGV military and
commercial applications in off-road terrain.

One of the issues of attempting to detect negative obstacles
at long ranges is the vertical angular resolution of the 3D
lidar. A possible solution to improving this angular resolution
is to retain multiple scans and analyze them as the vehicle is
moving, either from the 3D lidar or even a single-scan lidar,
angled in such a way that it would find negative obstacles
far enough away to react in time. The distance between
consecutive scans would be dependent only on the refresh
scan rate of the lidar and the speed of the vehicle. For instance,
a lidar scanning at 40Hz on a vehicle traveling at 32kph can
detect the ground every 0.22m (which can be set any distance
away from the vehicle). Currently the smaller lidar skips 2m
between lidar scans at 16m away. The large lidar skips 32m
between lidar scans 75m away.
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